MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. Grade N7M Nickel

6262 aluminum belongs to the aluminum alloys classification, while grade N7M nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is grade N7M nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
220
Elongation at Break, % 4.6 to 10
22
Fatigue Strength, MPa 90 to 110
190
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
85
Tensile Strength: Ultimate (UTS), MPa 290 to 390
590
Tensile Strength: Yield (Proof), MPa 270 to 360
310

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 160
900
Melting Completion (Liquidus), °C 650
1650
Melting Onset (Solidus), °C 580
1590
Specific Heat Capacity, J/kg-K 890
390
Thermal Expansion, µm/m-K 23
9.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
75
Density, g/cm3 2.8
9.3
Embodied Carbon, kg CO2/kg material 8.3
16
Embodied Energy, MJ/kg 150
200
Embodied Water, L/kg 1190
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 31
110
Resilience: Unit (Modulus of Resilience), kJ/m3 530 to 940
220
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 48
22
Strength to Weight: Axial, points 29 to 39
18
Strength to Weight: Bending, points 35 to 42
17
Thermal Shock Resistance, points 13 to 18
19

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0.040 to 0.14
0 to 1.0
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
0 to 3.0
Lead (Pb), % 0.4 to 0.7
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Molybdenum (Mo), % 0
30 to 33
Nickel (Ni), % 0
60.9 to 70
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.4 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0