MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. Nickel 684

6262 aluminum belongs to the aluminum alloys classification, while nickel 684 belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is nickel 684.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 4.6 to 10
11
Fatigue Strength, MPa 90 to 110
390
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
76
Shear Strength, MPa 170 to 240
710
Tensile Strength: Ultimate (UTS), MPa 290 to 390
1190
Tensile Strength: Yield (Proof), MPa 270 to 360
800

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 160
1000
Melting Completion (Liquidus), °C 650
1370
Melting Onset (Solidus), °C 580
1320
Specific Heat Capacity, J/kg-K 890
470
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 10
75
Density, g/cm3 2.8
8.3
Embodied Carbon, kg CO2/kg material 8.3
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1190
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 31
120
Resilience: Unit (Modulus of Resilience), kJ/m3 530 to 940
1610
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 48
23
Strength to Weight: Axial, points 29 to 39
40
Strength to Weight: Bending, points 35 to 42
30
Thermal Shock Resistance, points 13 to 18
34

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
2.5 to 3.3
Bismuth (Bi), % 0.4 to 0.7
0
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0.040 to 0.14
15 to 20
Cobalt (Co), % 0
13 to 20
Copper (Cu), % 0.15 to 0.4
0 to 0.15
Iron (Fe), % 0 to 0.7
0 to 4.0
Lead (Pb), % 0.4 to 0.7
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 0.75
Molybdenum (Mo), % 0
3.0 to 5.0
Nickel (Ni), % 0
42.7 to 64
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0.4 to 0.8
0 to 0.75
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
2.5 to 3.3
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0