MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. SAE-AISI T2 Steel

6262 aluminum belongs to the aluminum alloys classification, while SAE-AISI T2 steel belongs to the iron alloys. There are 21 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is SAE-AISI T2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 290 to 390
780 to 2150

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Melting Completion (Liquidus), °C 650
1820
Melting Onset (Solidus), °C 580
1760
Specific Heat Capacity, J/kg-K 890
410
Thermal Conductivity, W/m-K 170
19
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
46
Density, g/cm3 2.8
9.3
Embodied Carbon, kg CO2/kg material 8.3
11
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1190
98

Common Calculations

Stiffness to Weight: Axial, points 13
12
Stiffness to Weight: Bending, points 48
21
Strength to Weight: Axial, points 29 to 39
23 to 64
Strength to Weight: Bending, points 35 to 42
20 to 40
Thermal Diffusivity, mm2/s 69
4.9
Thermal Shock Resistance, points 13 to 18
23 to 65

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0.8 to 0.9
Chromium (Cr), % 0.040 to 0.14
3.8 to 4.5
Copper (Cu), % 0.15 to 0.4
0 to 0.25
Iron (Fe), % 0 to 0.7
70.8 to 75.8
Lead (Pb), % 0.4 to 0.7
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0.2 to 0.4
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.4 to 0.8
0.2 to 0.4
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 0
17.5 to 19
Vanadium (V), % 0
1.8 to 2.4
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0