MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. SAE-AISI T6 Steel

6262 aluminum belongs to the aluminum alloys classification, while SAE-AISI T6 steel belongs to the iron alloys. There are 21 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is SAE-AISI T6 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
81
Tensile Strength: Ultimate (UTS), MPa 290 to 390
880 to 2150

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Melting Completion (Liquidus), °C 650
1830
Melting Onset (Solidus), °C 580
1770
Specific Heat Capacity, J/kg-K 890
400
Thermal Conductivity, W/m-K 170
18
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
70
Density, g/cm3 2.8
9.5
Embodied Carbon, kg CO2/kg material 8.3
11
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1190
160

Common Calculations

Stiffness to Weight: Axial, points 13
12
Stiffness to Weight: Bending, points 48
21
Strength to Weight: Axial, points 29 to 39
26 to 63
Strength to Weight: Bending, points 35 to 42
21 to 39
Thermal Diffusivity, mm2/s 69
4.7
Thermal Shock Resistance, points 13 to 18
26 to 64

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0.75 to 0.85
Chromium (Cr), % 0.040 to 0.14
4.0 to 4.8
Cobalt (Co), % 0
11 to 13
Copper (Cu), % 0.15 to 0.4
0 to 0.25
Iron (Fe), % 0 to 0.7
55.9 to 63.5
Lead (Pb), % 0.4 to 0.7
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0.2 to 0.4
Molybdenum (Mo), % 0
0.4 to 1.0
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.4 to 0.8
0.2 to 0.4
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 0
18.5 to 21
Vanadium (V), % 0
1.5 to 2.1
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0