MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. C19010 Copper

6262 aluminum belongs to the aluminum alloys classification, while C19010 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is C19010 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
120
Elongation at Break, % 4.6 to 10
2.4 to 22
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
43
Shear Strength, MPa 170 to 240
210 to 360
Tensile Strength: Ultimate (UTS), MPa 290 to 390
330 to 640
Tensile Strength: Yield (Proof), MPa 270 to 360
260 to 620

Thermal Properties

Latent Heat of Fusion, J/g 400
210
Maximum Temperature: Mechanical, °C 160
200
Melting Completion (Liquidus), °C 650
1060
Melting Onset (Solidus), °C 580
1010
Specific Heat Capacity, J/kg-K 890
390
Thermal Conductivity, W/m-K 170
260
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
48 to 63
Electrical Conductivity: Equal Weight (Specific), % IACS 140
48 to 63

Otherwise Unclassified Properties

Base Metal Price, % relative 10
31
Density, g/cm3 2.8
8.9
Embodied Carbon, kg CO2/kg material 8.3
2.7
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1190
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 31
7.3 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 530 to 940
290 to 1680
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 48
18
Strength to Weight: Axial, points 29 to 39
10 to 20
Strength to Weight: Bending, points 35 to 42
12 to 18
Thermal Diffusivity, mm2/s 69
75
Thermal Shock Resistance, points 13 to 18
12 to 23

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Chromium (Cr), % 0.040 to 0.14
0
Copper (Cu), % 0.15 to 0.4
97.3 to 99.04
Iron (Fe), % 0 to 0.7
0
Lead (Pb), % 0.4 to 0.7
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0
0.8 to 1.8
Phosphorus (P), % 0
0.010 to 0.050
Silicon (Si), % 0.4 to 0.8
0.15 to 0.35
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0
0 to 0.5