MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. C63000 Bronze

6262 aluminum belongs to the aluminum alloys classification, while C63000 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is C63000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
120
Elongation at Break, % 4.6 to 10
7.9 to 15
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
44
Shear Strength, MPa 170 to 240
400 to 470
Tensile Strength: Ultimate (UTS), MPa 290 to 390
660 to 790
Tensile Strength: Yield (Proof), MPa 270 to 360
330 to 390

Thermal Properties

Latent Heat of Fusion, J/g 400
230
Maximum Temperature: Mechanical, °C 160
230
Melting Completion (Liquidus), °C 650
1050
Melting Onset (Solidus), °C 580
1040
Specific Heat Capacity, J/kg-K 890
440
Thermal Conductivity, W/m-K 170
39
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
29
Density, g/cm3 2.8
8.2
Embodied Carbon, kg CO2/kg material 8.3
3.5
Embodied Energy, MJ/kg 150
57
Embodied Water, L/kg 1190
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 31
47 to 82
Resilience: Unit (Modulus of Resilience), kJ/m3 530 to 940
470 to 640
Stiffness to Weight: Axial, points 13
7.9
Stiffness to Weight: Bending, points 48
20
Strength to Weight: Axial, points 29 to 39
22 to 26
Strength to Weight: Bending, points 35 to 42
20 to 23
Thermal Diffusivity, mm2/s 69
11
Thermal Shock Resistance, points 13 to 18
23 to 27

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
9.0 to 11
Bismuth (Bi), % 0.4 to 0.7
0
Chromium (Cr), % 0.040 to 0.14
0
Copper (Cu), % 0.15 to 0.4
76.8 to 85
Iron (Fe), % 0 to 0.7
2.0 to 4.0
Lead (Pb), % 0.4 to 0.7
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 1.5
Nickel (Ni), % 0
4.0 to 5.5
Silicon (Si), % 0.4 to 0.8
0 to 0.25
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0 to 0.3
Residuals, % 0
0 to 0.5