MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. C68300 Brass

6262 aluminum belongs to the aluminum alloys classification, while C68300 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is C68300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
100
Elongation at Break, % 4.6 to 10
15
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
40
Shear Strength, MPa 170 to 240
260
Tensile Strength: Ultimate (UTS), MPa 290 to 390
430
Tensile Strength: Yield (Proof), MPa 270 to 360
260

Thermal Properties

Latent Heat of Fusion, J/g 400
180
Maximum Temperature: Mechanical, °C 160
120
Melting Completion (Liquidus), °C 650
900
Melting Onset (Solidus), °C 580
890
Specific Heat Capacity, J/kg-K 890
390
Thermal Conductivity, W/m-K 170
120
Thermal Expansion, µm/m-K 23
20

Otherwise Unclassified Properties

Base Metal Price, % relative 10
23
Density, g/cm3 2.8
8.0
Embodied Carbon, kg CO2/kg material 8.3
2.8
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1190
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 31
56
Resilience: Unit (Modulus of Resilience), kJ/m3 530 to 940
330
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 48
20
Strength to Weight: Axial, points 29 to 39
15
Strength to Weight: Bending, points 35 to 42
16
Thermal Diffusivity, mm2/s 69
38
Thermal Shock Resistance, points 13 to 18
14

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
0
Antimony (Sb), % 0
0.3 to 1.0
Bismuth (Bi), % 0.4 to 0.7
0
Cadmium (Cd), % 0
0 to 0.010
Chromium (Cr), % 0.040 to 0.14
0
Copper (Cu), % 0.15 to 0.4
59 to 63
Iron (Fe), % 0 to 0.7
0
Lead (Pb), % 0.4 to 0.7
0 to 0.090
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0
Silicon (Si), % 0.4 to 0.8
0.3 to 1.0
Tin (Sn), % 0
0.050 to 0.2
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
34.2 to 40.4
Residuals, % 0
0 to 0.5