MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. C70250 Copper

6262 aluminum belongs to the aluminum alloys classification, while C70250 copper belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is C70250 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
120
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
44
Tensile Strength: Ultimate (UTS), MPa 290 to 390
520 to 740

Thermal Properties

Latent Heat of Fusion, J/g 400
220
Maximum Temperature: Mechanical, °C 160
210
Melting Completion (Liquidus), °C 650
1100
Melting Onset (Solidus), °C 580
1080
Specific Heat Capacity, J/kg-K 890
390
Thermal Conductivity, W/m-K 170
170
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
36 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 140
37 to 51

Otherwise Unclassified Properties

Base Metal Price, % relative 10
31
Density, g/cm3 2.8
8.9
Embodied Carbon, kg CO2/kg material 8.3
2.9
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1190
310

Common Calculations

Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 48
18
Strength to Weight: Axial, points 29 to 39
16 to 23
Strength to Weight: Bending, points 35 to 42
16 to 21
Thermal Diffusivity, mm2/s 69
49
Thermal Shock Resistance, points 13 to 18
18 to 26

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Chromium (Cr), % 0.040 to 0.14
0
Copper (Cu), % 0.15 to 0.4
92.7 to 97.5
Iron (Fe), % 0 to 0.7
0
Lead (Pb), % 0.4 to 0.7
0 to 0.050
Magnesium (Mg), % 0.8 to 1.2
0.050 to 0.3
Manganese (Mn), % 0 to 0.15
0 to 0.1
Nickel (Ni), % 0
2.2 to 4.2
Silicon (Si), % 0.4 to 0.8
0.25 to 1.2
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0 to 1.0
Residuals, % 0
0 to 0.5