MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. C72700 Copper-nickel

6262 aluminum belongs to the aluminum alloys classification, while C72700 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is C72700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
120
Elongation at Break, % 4.6 to 10
4.0 to 36
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
44
Shear Strength, MPa 170 to 240
310 to 620
Tensile Strength: Ultimate (UTS), MPa 290 to 390
460 to 1070
Tensile Strength: Yield (Proof), MPa 270 to 360
580 to 1060

Thermal Properties

Latent Heat of Fusion, J/g 400
210
Maximum Temperature: Mechanical, °C 160
200
Melting Completion (Liquidus), °C 650
1100
Melting Onset (Solidus), °C 580
930
Specific Heat Capacity, J/kg-K 890
380
Thermal Conductivity, W/m-K 170
54
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
11
Electrical Conductivity: Equal Weight (Specific), % IACS 140
11

Otherwise Unclassified Properties

Base Metal Price, % relative 10
36
Density, g/cm3 2.8
8.8
Embodied Carbon, kg CO2/kg material 8.3
4.0
Embodied Energy, MJ/kg 150
62
Embodied Water, L/kg 1190
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 31
20 to 380
Resilience: Unit (Modulus of Resilience), kJ/m3 530 to 940
1420 to 4770
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 48
19
Strength to Weight: Axial, points 29 to 39
14 to 34
Strength to Weight: Bending, points 35 to 42
15 to 26
Thermal Diffusivity, mm2/s 69
16
Thermal Shock Resistance, points 13 to 18
16 to 38

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Chromium (Cr), % 0.040 to 0.14
0
Copper (Cu), % 0.15 to 0.4
82.1 to 86
Iron (Fe), % 0 to 0.7
0 to 0.5
Lead (Pb), % 0.4 to 0.7
0 to 0.020
Magnesium (Mg), % 0.8 to 1.2
0 to 0.15
Manganese (Mn), % 0 to 0.15
0.050 to 0.3
Nickel (Ni), % 0
8.5 to 9.5
Niobium (Nb), % 0
0 to 0.1
Silicon (Si), % 0.4 to 0.8
0
Tin (Sn), % 0
5.5 to 6.5
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0 to 0.5
Residuals, % 0
0 to 0.3