MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. C99600 Bronze

6262 aluminum belongs to the aluminum alloys classification, while C99600 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is C99600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
150
Elongation at Break, % 4.6 to 10
27 to 34
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
56
Tensile Strength: Ultimate (UTS), MPa 290 to 390
560
Tensile Strength: Yield (Proof), MPa 270 to 360
250 to 300

Thermal Properties

Latent Heat of Fusion, J/g 400
240
Maximum Temperature: Mechanical, °C 160
200
Melting Completion (Liquidus), °C 650
1100
Melting Onset (Solidus), °C 580
1050
Specific Heat Capacity, J/kg-K 890
440
Thermal Expansion, µm/m-K 23
19

Otherwise Unclassified Properties

Base Metal Price, % relative 10
22
Density, g/cm3 2.8
8.1
Embodied Carbon, kg CO2/kg material 8.3
3.2
Embodied Energy, MJ/kg 150
51
Embodied Water, L/kg 1190
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 31
130 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 530 to 940
210 to 310
Stiffness to Weight: Axial, points 13
10
Stiffness to Weight: Bending, points 48
22
Strength to Weight: Axial, points 29 to 39
19
Strength to Weight: Bending, points 35 to 42
19
Thermal Shock Resistance, points 13 to 18
14

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
1.0 to 2.8
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0.040 to 0.14
0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0.15 to 0.4
50.8 to 60
Iron (Fe), % 0 to 0.7
0 to 0.2
Lead (Pb), % 0.4 to 0.7
0 to 0.020
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
39 to 45
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 0.4 to 0.8
0 to 0.1
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0 to 0.2
Residuals, % 0
0 to 0.3