MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. N06603 Nickel

6262 aluminum belongs to the aluminum alloys classification, while N06603 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is N06603 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 4.6 to 10
28
Fatigue Strength, MPa 90 to 110
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 170 to 240
480
Tensile Strength: Ultimate (UTS), MPa 290 to 390
740
Tensile Strength: Yield (Proof), MPa 270 to 360
340

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 160
1000
Melting Completion (Liquidus), °C 650
1340
Melting Onset (Solidus), °C 580
1300
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 170
11
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
50
Density, g/cm3 2.8
8.2
Embodied Carbon, kg CO2/kg material 8.3
8.4
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1190
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 31
170
Resilience: Unit (Modulus of Resilience), kJ/m3 530 to 940
300
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 29 to 39
25
Strength to Weight: Bending, points 35 to 42
22
Thermal Diffusivity, mm2/s 69
2.9
Thermal Shock Resistance, points 13 to 18
20

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
2.4 to 3.0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0.2 to 0.4
Chromium (Cr), % 0.040 to 0.14
24 to 26
Copper (Cu), % 0.15 to 0.4
0 to 0.5
Iron (Fe), % 0 to 0.7
8.0 to 11
Lead (Pb), % 0.4 to 0.7
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 0.15
Nickel (Ni), % 0
57.7 to 65.6
Phosphorus (P), % 0
0 to 0.2
Silicon (Si), % 0.4 to 0.8
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.15
0.010 to 0.25
Yttrium (Y), % 0
0.010 to 0.15
Zinc (Zn), % 0 to 0.25
0.010 to 0.1
Residuals, % 0 to 0.15
0