MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. N07752 Nickel

6262 aluminum belongs to the aluminum alloys classification, while N07752 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is N07752 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 4.6 to 10
22
Fatigue Strength, MPa 90 to 110
450
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 170 to 240
710
Tensile Strength: Ultimate (UTS), MPa 290 to 390
1120
Tensile Strength: Yield (Proof), MPa 270 to 360
740

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 160
960
Melting Completion (Liquidus), °C 650
1380
Melting Onset (Solidus), °C 580
1330
Specific Heat Capacity, J/kg-K 890
460
Thermal Conductivity, W/m-K 170
13
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
60
Density, g/cm3 2.8
8.4
Embodied Carbon, kg CO2/kg material 8.3
10
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 31
220
Resilience: Unit (Modulus of Resilience), kJ/m3 530 to 940
1450
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 48
23
Strength to Weight: Axial, points 29 to 39
37
Strength to Weight: Bending, points 35 to 42
29
Thermal Diffusivity, mm2/s 69
3.2
Thermal Shock Resistance, points 13 to 18
34

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
0.4 to 1.0
Bismuth (Bi), % 0.4 to 0.7
0
Boron (B), % 0
0 to 0.0070
Carbon (C), % 0
0.020 to 0.060
Chromium (Cr), % 0.040 to 0.14
14.5 to 17
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0.15 to 0.4
0 to 0.5
Iron (Fe), % 0 to 0.7
5.0 to 9.0
Lead (Pb), % 0.4 to 0.7
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Nickel (Ni), % 0
70 to 77.1
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0
0 to 0.0080
Silicon (Si), % 0.4 to 0.8
0 to 0.5
Sulfur (S), % 0
0 to 0.0030
Titanium (Ti), % 0 to 0.15
2.3 to 2.8
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.25
0 to 0.050
Residuals, % 0 to 0.15
0