MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. S35000 Stainless Steel

6262 aluminum belongs to the aluminum alloys classification, while S35000 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is S35000 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 4.6 to 10
2.3 to 14
Fatigue Strength, MPa 90 to 110
380 to 520
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Shear Strength, MPa 170 to 240
740 to 950
Tensile Strength: Ultimate (UTS), MPa 290 to 390
1300 to 1570
Tensile Strength: Yield (Proof), MPa 270 to 360
660 to 1160

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 160
900
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 580
1410
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 170
16
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
14
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.3
3.2
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1190
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 31
28 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 530 to 940
1070 to 3360
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 29 to 39
46 to 56
Strength to Weight: Bending, points 35 to 42
34 to 38
Thermal Diffusivity, mm2/s 69
4.4
Thermal Shock Resistance, points 13 to 18
42 to 51

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0.070 to 0.11
Chromium (Cr), % 0.040 to 0.14
16 to 17
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
72.7 to 76.9
Lead (Pb), % 0.4 to 0.7
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0.5 to 1.3
Molybdenum (Mo), % 0
2.5 to 3.2
Nickel (Ni), % 0
4.0 to 5.0
Nitrogen (N), % 0
0.070 to 0.13
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.4 to 0.8
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0

Comparable Variants