MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. S35045 Stainless Steel

6262 aluminum belongs to the aluminum alloys classification, while S35045 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is S35045 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 4.6 to 10
39
Fatigue Strength, MPa 90 to 110
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Shear Strength, MPa 170 to 240
370
Tensile Strength: Ultimate (UTS), MPa 290 to 390
540
Tensile Strength: Yield (Proof), MPa 270 to 360
190

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 650
1390
Melting Onset (Solidus), °C 580
1340
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 170
12
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
34
Density, g/cm3 2.8
8.0
Embodied Carbon, kg CO2/kg material 8.3
5.8
Embodied Energy, MJ/kg 150
83
Embodied Water, L/kg 1190
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 31
170
Resilience: Unit (Modulus of Resilience), kJ/m3 530 to 940
94
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 29 to 39
19
Strength to Weight: Bending, points 35 to 42
19
Thermal Diffusivity, mm2/s 69
3.2
Thermal Shock Resistance, points 13 to 18
12

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
0.15 to 0.6
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0.060 to 0.1
Chromium (Cr), % 0.040 to 0.14
25 to 29
Copper (Cu), % 0.15 to 0.4
0 to 0.75
Iron (Fe), % 0 to 0.7
29.4 to 42.6
Lead (Pb), % 0.4 to 0.7
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 1.5
Nickel (Ni), % 0
32 to 37
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.4 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0.15 to 0.6
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0