MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. S40930 Stainless Steel

6262 aluminum belongs to the aluminum alloys classification, while S40930 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is S40930 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 4.6 to 10
23
Fatigue Strength, MPa 90 to 110
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 170 to 240
270
Tensile Strength: Ultimate (UTS), MPa 290 to 390
430
Tensile Strength: Yield (Proof), MPa 270 to 360
190

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 160
710
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 580
1410
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 170
25
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
8.5
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.3
Embodied Energy, MJ/kg 150
32
Embodied Water, L/kg 1190
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 31
80
Resilience: Unit (Modulus of Resilience), kJ/m3 530 to 940
94
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 29 to 39
16
Strength to Weight: Bending, points 35 to 42
16
Thermal Diffusivity, mm2/s 69
6.7
Thermal Shock Resistance, points 13 to 18
16

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.040 to 0.14
10.5 to 11.7
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
84.7 to 89.4
Lead (Pb), % 0.4 to 0.7
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.080 to 0.75
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.4 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.15
0.050 to 0.2
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0