MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. S44330 Stainless Steel

6262 aluminum belongs to the aluminum alloys classification, while S44330 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is S44330 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 4.6 to 10
25
Fatigue Strength, MPa 90 to 110
160
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
78
Shear Strength, MPa 170 to 240
280
Tensile Strength: Ultimate (UTS), MPa 290 to 390
440
Tensile Strength: Yield (Proof), MPa 270 to 360
230

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 160
990
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 580
1390
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 170
21
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 10
13
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.8
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1190
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 31
91
Resilience: Unit (Modulus of Resilience), kJ/m3 530 to 940
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 29 to 39
16
Strength to Weight: Bending, points 35 to 42
17
Thermal Diffusivity, mm2/s 69
5.7
Thermal Shock Resistance, points 13 to 18
16

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0.040 to 0.14
20 to 23
Copper (Cu), % 0.15 to 0.4
0.3 to 0.8
Iron (Fe), % 0 to 0.7
72.5 to 79.7
Lead (Pb), % 0.4 to 0.7
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Niobium (Nb), % 0
0 to 0.8
Nitrogen (N), % 0
0 to 0.025
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.4 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0 to 0.8
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0