MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. S44626 Stainless Steel

6262 aluminum belongs to the aluminum alloys classification, while S44626 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is S44626 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 4.6 to 10
23
Fatigue Strength, MPa 90 to 110
230
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
80
Shear Strength, MPa 170 to 240
340
Tensile Strength: Ultimate (UTS), MPa 290 to 390
540
Tensile Strength: Yield (Proof), MPa 270 to 360
350

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 580
1390
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 170
17
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
14
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.9
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1190
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 31
110
Resilience: Unit (Modulus of Resilience), kJ/m3 530 to 940
300
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 48
26
Strength to Weight: Axial, points 29 to 39
19
Strength to Weight: Bending, points 35 to 42
19
Thermal Diffusivity, mm2/s 69
4.6
Thermal Shock Resistance, points 13 to 18
18

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0.040 to 0.14
25 to 27
Copper (Cu), % 0.15 to 0.4
0 to 0.2
Iron (Fe), % 0 to 0.7
68.1 to 74.1
Lead (Pb), % 0.4 to 0.7
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 0.75
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.4 to 0.8
0 to 0.75
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.15
0.2 to 1.0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0