MakeItFrom.com
Menu (ESC)

6262A Aluminum vs. 8011A Aluminum

Both 6262A aluminum and 8011A aluminum are aluminum alloys. They have a very high 97% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6262A aluminum and the bottom bar is 8011A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
69
Elongation at Break, % 4.5 to 11
1.7 to 28
Fatigue Strength, MPa 94 to 110
33 to 76
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 310 to 410
100 to 180
Tensile Strength: Yield (Proof), MPa 270 to 370
34 to 170

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 580
630
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 170
210
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
56
Electrical Conductivity: Equal Weight (Specific), % IACS 140
180

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.0
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 8.4
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
3.0 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1000
8.2 to 200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
50
Strength to Weight: Axial, points 31 to 41
11 to 18
Strength to Weight: Bending, points 36 to 44
18 to 26
Thermal Diffusivity, mm2/s 67
86
Thermal Shock Resistance, points 14 to 18
4.6 to 8.1

Alloy Composition

Aluminum (Al), % 94.2 to 97.8
97.5 to 99.1
Bismuth (Bi), % 0.4 to 0.9
0
Chromium (Cr), % 0.040 to 0.14
0 to 0.1
Copper (Cu), % 0.15 to 0.4
0 to 0.1
Iron (Fe), % 0 to 0.7
0.5 to 1.0
Magnesium (Mg), % 0.8 to 1.2
0 to 0.1
Manganese (Mn), % 0 to 0.15
0 to 0.1
Silicon (Si), % 0.4 to 0.8
0.4 to 0.8
Tin (Sn), % 0.4 to 1.0
0
Titanium (Ti), % 0 to 0.1
0 to 0.050
Zinc (Zn), % 0 to 0.25
0 to 0.1
Residuals, % 0
0 to 0.15