MakeItFrom.com
Menu (ESC)

6262A Aluminum vs. A356.0 Aluminum

Both 6262A aluminum and A356.0 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6262A aluminum and the bottom bar is A356.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
70
Elongation at Break, % 4.5 to 11
3.0 to 6.0
Fatigue Strength, MPa 94 to 110
50 to 90
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 310 to 410
160 to 270
Tensile Strength: Yield (Proof), MPa 270 to 370
83 to 200

Thermal Properties

Latent Heat of Fusion, J/g 400
500
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 640
610
Melting Onset (Solidus), °C 580
570
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 170
150
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
40
Electrical Conductivity: Equal Weight (Specific), % IACS 140
140

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 2.8
2.6
Embodied Carbon, kg CO2/kg material 8.4
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
4.8 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1000
49 to 300
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 49
53
Strength to Weight: Axial, points 31 to 41
17 to 29
Strength to Weight: Bending, points 36 to 44
25 to 36
Thermal Diffusivity, mm2/s 67
64
Thermal Shock Resistance, points 14 to 18
7.6 to 13

Alloy Composition

Aluminum (Al), % 94.2 to 97.8
91.1 to 93.3
Bismuth (Bi), % 0.4 to 0.9
0
Chromium (Cr), % 0.040 to 0.14
0
Copper (Cu), % 0.15 to 0.4
0 to 0.2
Iron (Fe), % 0 to 0.7
0 to 0.2
Magnesium (Mg), % 0.8 to 1.2
0.25 to 0.45
Manganese (Mn), % 0 to 0.15
0 to 0.1
Silicon (Si), % 0.4 to 0.8
6.5 to 7.5
Tin (Sn), % 0.4 to 1.0
0
Titanium (Ti), % 0 to 0.1
0 to 0.2
Zinc (Zn), % 0 to 0.25
0 to 0.1
Residuals, % 0
0 to 0.15

Comparable Variants