MakeItFrom.com
Menu (ESC)

6262A Aluminum vs. AISI 302 Stainless Steel

6262A aluminum belongs to the aluminum alloys classification, while AISI 302 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262A aluminum and the bottom bar is AISI 302 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 4.5 to 11
4.5 to 46
Fatigue Strength, MPa 94 to 110
210 to 520
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 190 to 240
400 to 830
Tensile Strength: Ultimate (UTS), MPa 310 to 410
580 to 1430
Tensile Strength: Yield (Proof), MPa 270 to 370
230 to 1100

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 160
710
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 580
1400
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 170
16
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 11
15
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.4
3.0
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1190
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
59 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1000
140 to 3070
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 31 to 41
21 to 51
Strength to Weight: Bending, points 36 to 44
20 to 36
Thermal Diffusivity, mm2/s 67
4.4
Thermal Shock Resistance, points 14 to 18
12 to 31

Alloy Composition

Aluminum (Al), % 94.2 to 97.8
0
Bismuth (Bi), % 0.4 to 0.9
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0.040 to 0.14
17 to 19
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
67.9 to 75
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 2.0
Nickel (Ni), % 0
8.0 to 10
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.4 to 0.8
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.4 to 1.0
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0