MakeItFrom.com
Menu (ESC)

6262A Aluminum vs. AISI 316 Stainless Steel

6262A aluminum belongs to the aluminum alloys classification, while AISI 316 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262A aluminum and the bottom bar is AISI 316 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 4.5 to 11
8.0 to 55
Fatigue Strength, MPa 94 to 110
210 to 430
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Shear Strength, MPa 190 to 240
350 to 690
Tensile Strength: Ultimate (UTS), MPa 310 to 410
520 to 1180
Tensile Strength: Yield (Proof), MPa 270 to 370
230 to 850

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 160
590
Melting Completion (Liquidus), °C 640
1400
Melting Onset (Solidus), °C 580
1380
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 170
15
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
19
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 8.4
3.9
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1190
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
85 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1000
130 to 1820
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 31 to 41
18 to 41
Strength to Weight: Bending, points 36 to 44
18 to 31
Thermal Diffusivity, mm2/s 67
4.1
Thermal Shock Resistance, points 14 to 18
11 to 26

Alloy Composition

Aluminum (Al), % 94.2 to 97.8
0
Bismuth (Bi), % 0.4 to 0.9
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.040 to 0.14
16 to 18
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
62 to 72
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
10 to 14
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.4 to 0.8
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.4 to 1.0
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0