MakeItFrom.com
Menu (ESC)

6262A Aluminum vs. AISI 317LMN Stainless Steel

6262A aluminum belongs to the aluminum alloys classification, while AISI 317LMN stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262A aluminum and the bottom bar is AISI 317LMN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 4.5 to 11
45
Fatigue Strength, MPa 94 to 110
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Shear Strength, MPa 190 to 240
430
Tensile Strength: Ultimate (UTS), MPa 310 to 410
620
Tensile Strength: Yield (Proof), MPa 270 to 370
270

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 160
1020
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 580
1410
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 170
14
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
24
Density, g/cm3 2.8
8.0
Embodied Carbon, kg CO2/kg material 8.4
4.8
Embodied Energy, MJ/kg 150
65
Embodied Water, L/kg 1190
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
230
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1000
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 31 to 41
22
Strength to Weight: Bending, points 36 to 44
20
Thermal Diffusivity, mm2/s 67
3.8
Thermal Shock Resistance, points 14 to 18
14

Alloy Composition

Aluminum (Al), % 94.2 to 97.8
0
Bismuth (Bi), % 0.4 to 0.9
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.040 to 0.14
17 to 20
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
54.4 to 65.4
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 2.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0
13.5 to 17.5
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.4 to 0.8
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.4 to 1.0
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0