MakeItFrom.com
Menu (ESC)

6262A Aluminum vs. EN 2.4650 Nickel

6262A aluminum belongs to the aluminum alloys classification, while EN 2.4650 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262A aluminum and the bottom bar is EN 2.4650 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 4.5 to 11
34
Fatigue Strength, MPa 94 to 110
480
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
80
Shear Strength, MPa 190 to 240
730
Tensile Strength: Ultimate (UTS), MPa 310 to 410
1090
Tensile Strength: Yield (Proof), MPa 270 to 370
650

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 160
1010
Melting Completion (Liquidus), °C 640
1400
Melting Onset (Solidus), °C 580
1350
Specific Heat Capacity, J/kg-K 890
450
Thermal Conductivity, W/m-K 170
12
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
80
Density, g/cm3 2.8
8.5
Embodied Carbon, kg CO2/kg material 8.4
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1190
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
320
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1000
1030
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
23
Strength to Weight: Axial, points 31 to 41
36
Strength to Weight: Bending, points 36 to 44
28
Thermal Diffusivity, mm2/s 67
3.1
Thermal Shock Resistance, points 14 to 18
33

Alloy Composition

Aluminum (Al), % 94.2 to 97.8
0.3 to 0.6
Bismuth (Bi), % 0.4 to 0.9
0
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0.040 to 0.080
Chromium (Cr), % 0.040 to 0.14
19 to 21
Cobalt (Co), % 0
19 to 21
Copper (Cu), % 0.15 to 0.4
0 to 0.2
Iron (Fe), % 0 to 0.7
0 to 0.7
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 0.6
Molybdenum (Mo), % 0
5.6 to 6.1
Nickel (Ni), % 0
46.9 to 54.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.4 to 0.8
0 to 0.4
Sulfur (S), % 0
0 to 0.0070
Tin (Sn), % 0.4 to 1.0
0
Titanium (Ti), % 0 to 0.1
1.9 to 2.4
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0