MakeItFrom.com
Menu (ESC)

6262A Aluminum vs. EN AC-43400 Aluminum

Both 6262A aluminum and EN AC-43400 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6262A aluminum and the bottom bar is EN AC-43400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
72
Elongation at Break, % 4.5 to 11
1.1
Fatigue Strength, MPa 94 to 110
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 310 to 410
270
Tensile Strength: Yield (Proof), MPa 270 to 370
160

Thermal Properties

Latent Heat of Fusion, J/g 400
540
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 640
600
Melting Onset (Solidus), °C 580
590
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 170
140
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
32
Electrical Conductivity: Equal Weight (Specific), % IACS 140
110

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 2.8
2.6
Embodied Carbon, kg CO2/kg material 8.4
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1000
180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 49
54
Strength to Weight: Axial, points 31 to 41
29
Strength to Weight: Bending, points 36 to 44
36
Thermal Diffusivity, mm2/s 67
59
Thermal Shock Resistance, points 14 to 18
12

Alloy Composition

Aluminum (Al), % 94.2 to 97.8
86 to 90.8
Bismuth (Bi), % 0.4 to 0.9
0
Chromium (Cr), % 0.040 to 0.14
0
Copper (Cu), % 0.15 to 0.4
0 to 0.1
Iron (Fe), % 0 to 0.7
0 to 1.0
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0.8 to 1.2
0.2 to 0.5
Manganese (Mn), % 0 to 0.15
0 to 0.55
Nickel (Ni), % 0
0 to 0.15
Silicon (Si), % 0.4 to 0.8
9.0 to 11
Tin (Sn), % 0.4 to 1.0
0 to 0.050
Titanium (Ti), % 0 to 0.1
0 to 0.2
Zinc (Zn), % 0 to 0.25
0 to 0.15
Residuals, % 0
0 to 0.15