MakeItFrom.com
Menu (ESC)

6262A Aluminum vs. EN AC-46600 Aluminum

Both 6262A aluminum and EN AC-46600 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6262A aluminum and the bottom bar is EN AC-46600 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
72
Elongation at Break, % 4.5 to 11
1.1
Fatigue Strength, MPa 94 to 110
75
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 310 to 410
180
Tensile Strength: Yield (Proof), MPa 270 to 370
110

Thermal Properties

Latent Heat of Fusion, J/g 400
490
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 640
620
Melting Onset (Solidus), °C 580
560
Specific Heat Capacity, J/kg-K 890
890
Thermal Conductivity, W/m-K 170
130
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
29
Electrical Conductivity: Equal Weight (Specific), % IACS 140
94

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 2.8
2.8
Embodied Carbon, kg CO2/kg material 8.4
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
1.7
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1000
81
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
50
Strength to Weight: Axial, points 31 to 41
18
Strength to Weight: Bending, points 36 to 44
25
Thermal Diffusivity, mm2/s 67
51
Thermal Shock Resistance, points 14 to 18
8.1

Alloy Composition

Aluminum (Al), % 94.2 to 97.8
85.6 to 92.4
Bismuth (Bi), % 0.4 to 0.9
0
Chromium (Cr), % 0.040 to 0.14
0
Copper (Cu), % 0.15 to 0.4
1.5 to 2.5
Iron (Fe), % 0 to 0.7
0 to 0.8
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0.8 to 1.2
0 to 0.35
Manganese (Mn), % 0 to 0.15
0.15 to 0.65
Nickel (Ni), % 0
0 to 0.35
Silicon (Si), % 0.4 to 0.8
6.0 to 8.0
Tin (Sn), % 0.4 to 1.0
0 to 0.15
Titanium (Ti), % 0 to 0.1
0 to 0.25
Zinc (Zn), % 0 to 0.25
0 to 1.0
Residuals, % 0
0 to 0.15