MakeItFrom.com
Menu (ESC)

6262A Aluminum vs. CC382H Copper-nickel

6262A aluminum belongs to the aluminum alloys classification, while CC382H copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262A aluminum and the bottom bar is CC382H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
140
Elongation at Break, % 4.5 to 11
20
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
53
Tensile Strength: Ultimate (UTS), MPa 310 to 410
490
Tensile Strength: Yield (Proof), MPa 270 to 370
290

Thermal Properties

Latent Heat of Fusion, J/g 400
240
Maximum Temperature: Mechanical, °C 160
260
Melting Completion (Liquidus), °C 640
1180
Melting Onset (Solidus), °C 580
1120
Specific Heat Capacity, J/kg-K 890
410
Thermal Conductivity, W/m-K 170
30
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
5.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
5.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
41
Density, g/cm3 2.8
8.9
Embodied Carbon, kg CO2/kg material 8.4
5.2
Embodied Energy, MJ/kg 150
76
Embodied Water, L/kg 1190
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
85
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1000
290
Stiffness to Weight: Axial, points 14
8.8
Stiffness to Weight: Bending, points 49
20
Strength to Weight: Axial, points 31 to 41
15
Strength to Weight: Bending, points 36 to 44
16
Thermal Diffusivity, mm2/s 67
8.2
Thermal Shock Resistance, points 14 to 18
16

Alloy Composition

Aluminum (Al), % 94.2 to 97.8
0 to 0.010
Bismuth (Bi), % 0.4 to 0.9
0 to 0.0020
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.040 to 0.14
1.5 to 2.0
Copper (Cu), % 0.15 to 0.4
62.8 to 68.4
Iron (Fe), % 0 to 0.7
0.5 to 1.0
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 0.8 to 1.2
0 to 0.010
Manganese (Mn), % 0 to 0.15
0.5 to 1.0
Nickel (Ni), % 0
29 to 32
Phosphorus (P), % 0
0 to 0.010
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0.4 to 0.8
0.15 to 0.5
Sulfur (S), % 0
0 to 0.010
Tellurium (Te), % 0
0 to 0.0050
Tin (Sn), % 0.4 to 1.0
0
Titanium (Ti), % 0 to 0.1
0 to 0.25
Zinc (Zn), % 0 to 0.25
0 to 0.2
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 0.15
0