MakeItFrom.com
Menu (ESC)

6262A Aluminum vs. Nickel 80A

6262A aluminum belongs to the aluminum alloys classification, while nickel 80A belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262A aluminum and the bottom bar is nickel 80A.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 4.5 to 11
22
Fatigue Strength, MPa 94 to 110
430
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 190 to 240
660
Tensile Strength: Ultimate (UTS), MPa 310 to 410
1040
Tensile Strength: Yield (Proof), MPa 270 to 370
710

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 160
980
Melting Completion (Liquidus), °C 640
1360
Melting Onset (Solidus), °C 580
1310
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 170
11
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
55
Density, g/cm3 2.8
8.3
Embodied Carbon, kg CO2/kg material 8.4
9.8
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1190
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
210
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1000
1300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
23
Strength to Weight: Axial, points 31 to 41
35
Strength to Weight: Bending, points 36 to 44
27
Thermal Diffusivity, mm2/s 67
2.9
Thermal Shock Resistance, points 14 to 18
31

Alloy Composition

Aluminum (Al), % 94.2 to 97.8
0.5 to 1.8
Bismuth (Bi), % 0.4 to 0.9
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0.040 to 0.14
18 to 21
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
0 to 3.0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Nickel (Ni), % 0
69.4 to 79.7
Silicon (Si), % 0.4 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.4 to 1.0
0
Titanium (Ti), % 0 to 0.1
1.8 to 2.7
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0