MakeItFrom.com
Menu (ESC)

6262A Aluminum vs. C10700 Copper

6262A aluminum belongs to the aluminum alloys classification, while C10700 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262A aluminum and the bottom bar is C10700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
120
Elongation at Break, % 4.5 to 11
2.2 to 50
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
43
Shear Strength, MPa 190 to 240
160 to 240
Tensile Strength: Ultimate (UTS), MPa 310 to 410
230 to 410
Tensile Strength: Yield (Proof), MPa 270 to 370
77 to 410

Thermal Properties

Latent Heat of Fusion, J/g 400
210
Maximum Temperature: Mechanical, °C 160
200
Melting Completion (Liquidus), °C 640
1080
Melting Onset (Solidus), °C 580
1080
Specific Heat Capacity, J/kg-K 890
390
Thermal Conductivity, W/m-K 170
390
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
100
Electrical Conductivity: Equal Weight (Specific), % IACS 140
100

Otherwise Unclassified Properties

Base Metal Price, % relative 11
35
Density, g/cm3 2.8
9.0
Embodied Carbon, kg CO2/kg material 8.4
2.7
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1190
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
7.9 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1000
25 to 710
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 49
18
Strength to Weight: Axial, points 31 to 41
7.2 to 13
Strength to Weight: Bending, points 36 to 44
9.4 to 14
Thermal Diffusivity, mm2/s 67
110
Thermal Shock Resistance, points 14 to 18
8.2 to 15

Alloy Composition

Aluminum (Al), % 94.2 to 97.8
0
Bismuth (Bi), % 0.4 to 0.9
0
Chromium (Cr), % 0.040 to 0.14
0
Copper (Cu), % 0.15 to 0.4
99.83 to 99.915
Iron (Fe), % 0 to 0.7
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0
Oxygen (O), % 0
0 to 0.0010
Silicon (Si), % 0.4 to 0.8
0
Silver (Ag), % 0
0.085 to 0.12
Tin (Sn), % 0.4 to 1.0
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0
0 to 0.050