MakeItFrom.com
Menu (ESC)

6262A Aluminum vs. C51100 Bronze

6262A aluminum belongs to the aluminum alloys classification, while C51100 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262A aluminum and the bottom bar is C51100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 4.5 to 11
2.5 to 50
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
42
Shear Strength, MPa 190 to 240
230 to 410
Tensile Strength: Ultimate (UTS), MPa 310 to 410
330 to 720
Tensile Strength: Yield (Proof), MPa 270 to 370
93 to 700

Thermal Properties

Latent Heat of Fusion, J/g 400
200
Maximum Temperature: Mechanical, °C 160
190
Melting Completion (Liquidus), °C 640
1060
Melting Onset (Solidus), °C 580
970
Specific Heat Capacity, J/kg-K 890
380
Thermal Conductivity, W/m-K 170
84
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
20
Electrical Conductivity: Equal Weight (Specific), % IACS 140
20

Otherwise Unclassified Properties

Base Metal Price, % relative 11
32
Density, g/cm3 2.8
8.9
Embodied Carbon, kg CO2/kg material 8.4
3.0
Embodied Energy, MJ/kg 150
48
Embodied Water, L/kg 1190
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
18 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1000
38 to 2170
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 49
18
Strength to Weight: Axial, points 31 to 41
10 to 22
Strength to Weight: Bending, points 36 to 44
12 to 20
Thermal Diffusivity, mm2/s 67
25
Thermal Shock Resistance, points 14 to 18
12 to 26

Alloy Composition

Aluminum (Al), % 94.2 to 97.8
0
Bismuth (Bi), % 0.4 to 0.9
0
Chromium (Cr), % 0.040 to 0.14
0
Copper (Cu), % 0.15 to 0.4
93.8 to 96.5
Iron (Fe), % 0 to 0.7
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0
Phosphorus (P), % 0
0.030 to 0.35
Silicon (Si), % 0.4 to 0.8
0
Tin (Sn), % 0.4 to 1.0
3.5 to 4.9
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0 to 0.3
Residuals, % 0
0 to 0.5