MakeItFrom.com
Menu (ESC)

6262A Aluminum vs. S21460 Stainless Steel

6262A aluminum belongs to the aluminum alloys classification, while S21460 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262A aluminum and the bottom bar is S21460 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 4.5 to 11
46
Fatigue Strength, MPa 94 to 110
390
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 190 to 240
580
Tensile Strength: Ultimate (UTS), MPa 310 to 410
830
Tensile Strength: Yield (Proof), MPa 270 to 370
430

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 160
920
Melting Completion (Liquidus), °C 640
1380
Melting Onset (Solidus), °C 580
1330
Specific Heat Capacity, J/kg-K 890
480
Thermal Expansion, µm/m-K 23
18

Otherwise Unclassified Properties

Base Metal Price, % relative 11
14
Density, g/cm3 2.8
7.6
Embodied Carbon, kg CO2/kg material 8.4
3.0
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1190
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
320
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1000
460
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 31 to 41
30
Strength to Weight: Bending, points 36 to 44
26
Thermal Shock Resistance, points 14 to 18
17

Alloy Composition

Aluminum (Al), % 94.2 to 97.8
0
Bismuth (Bi), % 0.4 to 0.9
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0.040 to 0.14
17 to 19
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
57.3 to 63.7
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
14 to 16
Nickel (Ni), % 0
5.0 to 6.0
Nitrogen (N), % 0
0.35 to 0.5
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0.4 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.4 to 1.0
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0