MakeItFrom.com
Menu (ESC)

6262A Aluminum vs. S21800 Stainless Steel

6262A aluminum belongs to the aluminum alloys classification, while S21800 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262A aluminum and the bottom bar is S21800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 4.5 to 11
40
Fatigue Strength, MPa 94 to 110
330
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 190 to 240
510
Tensile Strength: Ultimate (UTS), MPa 310 to 410
740
Tensile Strength: Yield (Proof), MPa 270 to 370
390

Thermal Properties

Latent Heat of Fusion, J/g 400
340
Maximum Temperature: Mechanical, °C 160
900
Melting Completion (Liquidus), °C 640
1360
Melting Onset (Solidus), °C 580
1310
Specific Heat Capacity, J/kg-K 890
500
Thermal Expansion, µm/m-K 23
16

Otherwise Unclassified Properties

Base Metal Price, % relative 11
15
Density, g/cm3 2.8
7.5
Embodied Carbon, kg CO2/kg material 8.4
3.1
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1190
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
250
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1000
390
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
26
Strength to Weight: Axial, points 31 to 41
27
Strength to Weight: Bending, points 36 to 44
24
Thermal Shock Resistance, points 14 to 18
17

Alloy Composition

Aluminum (Al), % 94.2 to 97.8
0
Bismuth (Bi), % 0.4 to 0.9
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0.040 to 0.14
16 to 18
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
59.1 to 65.4
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
7.0 to 9.0
Nickel (Ni), % 0
8.0 to 9.0
Nitrogen (N), % 0
0.080 to 0.18
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0.4 to 0.8
3.5 to 4.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.4 to 1.0
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0