MakeItFrom.com
Menu (ESC)

6351 Aluminum vs. EN 1.5503 Steel

6351 aluminum belongs to the aluminum alloys classification, while EN 1.5503 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6351 aluminum and the bottom bar is EN 1.5503 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 7.8 to 18
12 to 17
Fatigue Strength, MPa 79 to 130
180 to 280
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 84 to 200
270 to 320
Tensile Strength: Ultimate (UTS), MPa 140 to 310
400 to 520
Tensile Strength: Yield (Proof), MPa 95 to 270
270 to 430

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 180
52
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 150
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1180
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 38
41 to 81
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 540
200 to 490
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 14 to 32
14 to 19
Strength to Weight: Bending, points 22 to 38
15 to 18
Thermal Diffusivity, mm2/s 72
14
Thermal Shock Resistance, points 6.1 to 14
12 to 15

Alloy Composition

Aluminum (Al), % 96 to 98.5
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.16 to 0.2
Copper (Cu), % 0 to 0.1
0 to 0.25
Iron (Fe), % 0 to 0.5
98.4 to 99.239
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.4 to 0.8
0.6 to 0.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.7 to 1.3
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0