MakeItFrom.com
Menu (ESC)

6351 Aluminum vs. G-CoCr28 Cobalt

6351 aluminum belongs to the aluminum alloys classification, while G-CoCr28 cobalt belongs to the cobalt alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6351 aluminum and the bottom bar is G-CoCr28 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 7.8 to 18
6.7
Fatigue Strength, MPa 79 to 130
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
83
Tensile Strength: Ultimate (UTS), MPa 140 to 310
560
Tensile Strength: Yield (Proof), MPa 95 to 270
260

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 160
1200
Melting Completion (Liquidus), °C 650
1330
Melting Onset (Solidus), °C 570
1270
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 180
8.5
Thermal Expansion, µm/m-K 23
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
100
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.3
6.2
Embodied Energy, MJ/kg 150
84
Embodied Water, L/kg 1180
440

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 38
31
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 540
160
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 14 to 32
19
Strength to Weight: Bending, points 22 to 38
19
Thermal Diffusivity, mm2/s 72
2.2
Thermal Shock Resistance, points 6.1 to 14
14

Alloy Composition

Aluminum (Al), % 96 to 98.5
0
Carbon (C), % 0
0.050 to 0.25
Chromium (Cr), % 0
27 to 30
Cobalt (Co), % 0
48 to 52
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
9.7 to 24.5
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.4 to 0.8
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 4.0
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.7 to 1.3
0.5 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0