MakeItFrom.com
Menu (ESC)

6351 Aluminum vs. C84100 Brass

6351 aluminum belongs to the aluminum alloys classification, while C84100 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6351 aluminum and the bottom bar is C84100 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 7.8 to 18
13
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
39
Tensile Strength: Ultimate (UTS), MPa 140 to 310
230
Tensile Strength: Yield (Proof), MPa 95 to 270
81

Thermal Properties

Latent Heat of Fusion, J/g 410
190
Maximum Temperature: Mechanical, °C 160
160
Melting Completion (Liquidus), °C 650
1000
Melting Onset (Solidus), °C 570
810
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 180
110
Thermal Expansion, µm/m-K 23
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46
23
Electrical Conductivity: Equal Weight (Specific), % IACS 150
25

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 8.3
2.9
Embodied Energy, MJ/kg 150
48
Embodied Water, L/kg 1180
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 38
24
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 540
30
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 14 to 32
7.4
Strength to Weight: Bending, points 22 to 38
9.7
Thermal Diffusivity, mm2/s 72
33
Thermal Shock Resistance, points 6.1 to 14
7.8

Alloy Composition

Aluminum (Al), % 96 to 98.5
0 to 0.010
Antimony (Sb), % 0
0 to 0.050
Bismuth (Bi), % 0
0 to 0.090
Copper (Cu), % 0 to 0.1
78 to 85
Iron (Fe), % 0 to 0.5
0 to 0.3
Lead (Pb), % 0
0.050 to 0.25
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.4 to 0.8
0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0.7 to 1.3
0 to 0.010
Tin (Sn), % 0
1.5 to 4.5
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
12 to 20
Residuals, % 0
0 to 0.5