MakeItFrom.com
Menu (ESC)

6351 Aluminum vs. S30601 Stainless Steel

6351 aluminum belongs to the aluminum alloys classification, while S30601 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6351 aluminum and the bottom bar is S30601 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 7.8 to 18
37
Fatigue Strength, MPa 79 to 130
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 84 to 200
450
Tensile Strength: Ultimate (UTS), MPa 140 to 310
660
Tensile Strength: Yield (Proof), MPa 95 to 270
300

Thermal Properties

Latent Heat of Fusion, J/g 410
370
Maximum Temperature: Mechanical, °C 160
950
Melting Completion (Liquidus), °C 650
1360
Melting Onset (Solidus), °C 570
1310
Specific Heat Capacity, J/kg-K 900
500
Thermal Expansion, µm/m-K 23
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
20
Density, g/cm3 2.7
7.6
Embodied Carbon, kg CO2/kg material 8.3
3.9
Embodied Energy, MJ/kg 150
55
Embodied Water, L/kg 1180
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 38
200
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 540
230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 14 to 32
24
Strength to Weight: Bending, points 22 to 38
22
Thermal Shock Resistance, points 6.1 to 14
16

Alloy Composition

Aluminum (Al), % 96 to 98.5
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
17 to 18
Copper (Cu), % 0 to 0.1
0 to 0.35
Iron (Fe), % 0 to 0.5
56.9 to 60.5
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.4 to 0.8
0.5 to 0.8
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0
17 to 18
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.7 to 1.3
5.0 to 5.6
Sulfur (S), % 0
0 to 0.013
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0