MakeItFrom.com
Menu (ESC)

6360 Aluminum vs. 444.0 Aluminum

Both 6360 aluminum and 444.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6360 aluminum and the bottom bar is 444.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
71
Elongation at Break, % 9.0 to 18
25
Fatigue Strength, MPa 31 to 67
51
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 120 to 220
190
Tensile Strength: Yield (Proof), MPa 57 to 170
83

Thermal Properties

Latent Heat of Fusion, J/g 400
500
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 640
610
Melting Onset (Solidus), °C 630
600
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 210
160
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
40
Electrical Conductivity: Equal Weight (Specific), % IACS 180
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.3
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 19
39
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 210
49
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
53
Strength to Weight: Axial, points 13 to 23
20
Strength to Weight: Bending, points 20 to 30
28
Thermal Diffusivity, mm2/s 86
67
Thermal Shock Resistance, points 5.5 to 9.9
8.8

Alloy Composition

Aluminum (Al), % 97.8 to 99.3
90.5 to 93.5
Chromium (Cr), % 0 to 0.050
0
Copper (Cu), % 0 to 0.15
0 to 0.25
Iron (Fe), % 0.1 to 0.3
0 to 0.6
Magnesium (Mg), % 0.25 to 0.45
0 to 0.1
Manganese (Mn), % 0.020 to 0.15
0 to 0.35
Silicon (Si), % 0.35 to 0.8
6.5 to 7.5
Titanium (Ti), % 0 to 0.1
0 to 0.25
Zinc (Zn), % 0 to 0.1
0 to 0.35
Residuals, % 0
0 to 0.15