MakeItFrom.com
Menu (ESC)

6360 Aluminum vs. ACI-ASTM CK20 Steel

6360 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CK20 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6360 aluminum and the bottom bar is ACI-ASTM CK20 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 9.0 to 18
37
Fatigue Strength, MPa 31 to 67
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Tensile Strength: Ultimate (UTS), MPa 120 to 220
530
Tensile Strength: Yield (Proof), MPa 57 to 170
260

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 640
1400
Melting Onset (Solidus), °C 630
1430
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 210
14
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 180
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
25
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
4.4
Embodied Energy, MJ/kg 150
62
Embodied Water, L/kg 1190
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 19
160
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 210
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 13 to 23
19
Strength to Weight: Bending, points 20 to 30
19
Thermal Diffusivity, mm2/s 86
3.7
Thermal Shock Resistance, points 5.5 to 9.9
13

Alloy Composition

Aluminum (Al), % 97.8 to 99.3
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0 to 0.050
23 to 27
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 0.1 to 0.3
46.7 to 58
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0.020 to 0.15
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
19 to 22
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.35 to 0.8
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0