MakeItFrom.com
Menu (ESC)

6360 Aluminum vs. AWS E310Mo

6360 aluminum belongs to the aluminum alloys classification, while AWS E310Mo belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6360 aluminum and the bottom bar is AWS E310Mo.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 9.0 to 18
34
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 120 to 220
620

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 630
1370
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 210
14
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 180
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
5.1
Embodied Energy, MJ/kg 150
71
Embodied Water, L/kg 1190
210

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 13 to 23
22
Strength to Weight: Bending, points 20 to 30
20
Thermal Diffusivity, mm2/s 86
3.7
Thermal Shock Resistance, points 5.5 to 9.9
15

Alloy Composition

Aluminum (Al), % 97.8 to 99.3
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0 to 0.050
25 to 28
Copper (Cu), % 0 to 0.15
0 to 0.75
Iron (Fe), % 0.1 to 0.3
42.8 to 52
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0.020 to 0.15
1.0 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
20 to 22
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.35 to 0.8
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0