MakeItFrom.com
Menu (ESC)

6360 Aluminum vs. AWS ER110S-1

6360 aluminum belongs to the aluminum alloys classification, while AWS ER110S-1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6360 aluminum and the bottom bar is AWS ER110S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 9.0 to 18
17
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 120 to 220
870
Tensile Strength: Yield (Proof), MPa 57 to 170
740

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 630
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 210
47
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 180
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.0
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.8
Embodied Energy, MJ/kg 150
25
Embodied Water, L/kg 1190
55

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 19
140
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 210
1460
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 13 to 23
31
Strength to Weight: Bending, points 20 to 30
26
Thermal Diffusivity, mm2/s 86
13
Thermal Shock Resistance, points 5.5 to 9.9
26

Alloy Composition

Aluminum (Al), % 97.8 to 99.3
0 to 0.1
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0 to 0.050
0 to 0.5
Copper (Cu), % 0 to 0.15
0 to 0.25
Iron (Fe), % 0.1 to 0.3
92.8 to 96.3
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0.020 to 0.15
1.4 to 1.8
Molybdenum (Mo), % 0
0.25 to 0.55
Nickel (Ni), % 0
1.9 to 2.6
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0.35 to 0.8
0.2 to 0.55
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0 to 0.1
Vanadium (V), % 0
0 to 0.040
Zinc (Zn), % 0 to 0.1
0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.5