MakeItFrom.com
Menu (ESC)

6360 Aluminum vs. Nickel 30

6360 aluminum belongs to the aluminum alloys classification, while nickel 30 belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6360 aluminum and the bottom bar is nickel 30.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 9.0 to 18
34
Fatigue Strength, MPa 31 to 67
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
82
Shear Strength, MPa 76 to 130
440
Tensile Strength: Ultimate (UTS), MPa 120 to 220
660
Tensile Strength: Yield (Proof), MPa 57 to 170
270

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 160
1020
Melting Completion (Liquidus), °C 640
1480
Melting Onset (Solidus), °C 630
1430
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 210
10
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 180
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 8.3
9.4
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1190
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 19
180
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 210
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 13 to 23
22
Strength to Weight: Bending, points 20 to 30
20
Thermal Diffusivity, mm2/s 86
2.7
Thermal Shock Resistance, points 5.5 to 9.9
18

Alloy Composition

Aluminum (Al), % 97.8 to 99.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.050
28 to 31.5
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 0 to 0.15
1.0 to 2.4
Iron (Fe), % 0.1 to 0.3
13 to 17
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0.020 to 0.15
0 to 0.030
Molybdenum (Mo), % 0
4.0 to 6.0
Nickel (Ni), % 0
30.2 to 52.2
Niobium (Nb), % 0
0.3 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.35 to 0.8
0 to 0.8
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
1.5 to 4.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0