MakeItFrom.com
Menu (ESC)

6360 Aluminum vs. Nickel 617

6360 aluminum belongs to the aluminum alloys classification, while nickel 617 belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6360 aluminum and the bottom bar is nickel 617.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 9.0 to 18
40
Fatigue Strength, MPa 31 to 67
220
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
80
Shear Strength, MPa 76 to 130
510
Tensile Strength: Ultimate (UTS), MPa 120 to 220
740
Tensile Strength: Yield (Proof), MPa 57 to 170
280

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 160
1010
Melting Completion (Liquidus), °C 640
1380
Melting Onset (Solidus), °C 630
1330
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 210
13
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 180
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 8.3
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1190
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 19
230
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 210
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 13 to 23
24
Strength to Weight: Bending, points 20 to 30
21
Thermal Diffusivity, mm2/s 86
3.5
Thermal Shock Resistance, points 5.5 to 9.9
21

Alloy Composition

Aluminum (Al), % 97.8 to 99.3
0.8 to 1.5
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0 to 0.050
20 to 24
Cobalt (Co), % 0
10 to 15
Copper (Cu), % 0 to 0.15
0 to 0.5
Iron (Fe), % 0.1 to 0.3
0 to 3.0
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0.020 to 0.15
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
44.5 to 62
Silicon (Si), % 0.35 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0