MakeItFrom.com
Menu (ESC)

6360 Aluminum vs. Nickel 80A

6360 aluminum belongs to the aluminum alloys classification, while nickel 80A belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6360 aluminum and the bottom bar is nickel 80A.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 9.0 to 18
22
Fatigue Strength, MPa 31 to 67
430
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 76 to 130
660
Tensile Strength: Ultimate (UTS), MPa 120 to 220
1040
Tensile Strength: Yield (Proof), MPa 57 to 170
710

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 160
980
Melting Completion (Liquidus), °C 640
1360
Melting Onset (Solidus), °C 630
1310
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 210
11
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 180
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 8.3
9.8
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1190
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 19
210
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 210
1300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 13 to 23
35
Strength to Weight: Bending, points 20 to 30
27
Thermal Diffusivity, mm2/s 86
2.9
Thermal Shock Resistance, points 5.5 to 9.9
31

Alloy Composition

Aluminum (Al), % 97.8 to 99.3
0.5 to 1.8
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.050
18 to 21
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 0.1 to 0.3
0 to 3.0
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0.020 to 0.15
0 to 1.0
Nickel (Ni), % 0
69.4 to 79.7
Silicon (Si), % 0.35 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
1.8 to 2.7
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0