MakeItFrom.com
Menu (ESC)

6360 Aluminum vs. SAE-AISI A3 Steel

6360 aluminum belongs to the aluminum alloys classification, while SAE-AISI A3 steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6360 aluminum and the bottom bar is SAE-AISI A3 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 120 to 220
700 to 2150

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 630
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 210
37
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
8.3
Electrical Conductivity: Equal Weight (Specific), % IACS 180
9.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
6.0
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
4.4
Embodied Energy, MJ/kg 150
67
Embodied Water, L/kg 1190
78

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 13 to 23
25 to 77
Strength to Weight: Bending, points 20 to 30
23 to 48
Thermal Diffusivity, mm2/s 86
10
Thermal Shock Resistance, points 5.5 to 9.9
23 to 70

Alloy Composition

Aluminum (Al), % 97.8 to 99.3
0
Carbon (C), % 0
1.2 to 1.3
Chromium (Cr), % 0 to 0.050
4.8 to 5.5
Copper (Cu), % 0 to 0.15
0 to 0.25
Iron (Fe), % 0.1 to 0.3
88.7 to 92
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0.020 to 0.15
0.4 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.4
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.35 to 0.8
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0
0.8 to 1.4
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0