MakeItFrom.com
Menu (ESC)

6360 Aluminum vs. SAE-AISI H25 Steel

6360 aluminum belongs to the aluminum alloys classification, while SAE-AISI H25 steel belongs to the iron alloys. There are 21 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6360 aluminum and the bottom bar is SAE-AISI H25 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 120 to 220
710 to 1620

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Melting Completion (Liquidus), °C 640
1750
Melting Onset (Solidus), °C 630
1700
Specific Heat Capacity, J/kg-K 900
420
Thermal Conductivity, W/m-K 210
26
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
38
Density, g/cm3 2.7
9.1
Embodied Carbon, kg CO2/kg material 8.3
6.2
Embodied Energy, MJ/kg 150
93
Embodied Water, L/kg 1190
83

Common Calculations

Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 50
22
Strength to Weight: Axial, points 13 to 23
22 to 50
Strength to Weight: Bending, points 20 to 30
20 to 34
Thermal Diffusivity, mm2/s 86
6.7
Thermal Shock Resistance, points 5.5 to 9.9
22 to 49

Alloy Composition

Aluminum (Al), % 97.8 to 99.3
0
Carbon (C), % 0
0.22 to 0.32
Chromium (Cr), % 0 to 0.050
3.8 to 4.5
Copper (Cu), % 0 to 0.15
0 to 0.25
Iron (Fe), % 0.1 to 0.3
77.2 to 81.3
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0.020 to 0.15
0.15 to 0.4
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.35 to 0.8
0.15 to 0.4
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
14 to 16
Vanadium (V), % 0
0.4 to 0.6
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0