MakeItFrom.com
Menu (ESC)

6360 Aluminum vs. S32615 Stainless Steel

6360 aluminum belongs to the aluminum alloys classification, while S32615 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6360 aluminum and the bottom bar is S32615 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 9.0 to 18
28
Fatigue Strength, MPa 31 to 67
180
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 76 to 130
400
Tensile Strength: Ultimate (UTS), MPa 120 to 220
620
Tensile Strength: Yield (Proof), MPa 57 to 170
250

Thermal Properties

Latent Heat of Fusion, J/g 400
370
Maximum Temperature: Mechanical, °C 160
990
Melting Completion (Liquidus), °C 640
1350
Melting Onset (Solidus), °C 630
1310
Specific Heat Capacity, J/kg-K 900
500
Thermal Expansion, µm/m-K 23
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
24
Density, g/cm3 2.7
7.6
Embodied Carbon, kg CO2/kg material 8.3
4.4
Embodied Energy, MJ/kg 150
63
Embodied Water, L/kg 1190
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 19
140
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 210
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 13 to 23
23
Strength to Weight: Bending, points 20 to 30
21
Thermal Shock Resistance, points 5.5 to 9.9
15

Alloy Composition

Aluminum (Al), % 97.8 to 99.3
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0 to 0.050
16.5 to 19.5
Copper (Cu), % 0 to 0.15
1.5 to 2.5
Iron (Fe), % 0.1 to 0.3
46.4 to 57.9
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0.020 to 0.15
0 to 2.0
Molybdenum (Mo), % 0
0.3 to 1.5
Nickel (Ni), % 0
19 to 22
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.35 to 0.8
4.8 to 6.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0