MakeItFrom.com
Menu (ESC)

6360 Aluminum vs. Z40301 Zinc

6360 aluminum belongs to the aluminum alloys classification, while Z40301 zinc belongs to the zinc alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6360 aluminum and the bottom bar is Z40301 zinc.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
87
Elongation at Break, % 9.0 to 18
60
Poisson's Ratio 0.33
0.25
Shear Modulus, GPa 26
35
Tensile Strength: Ultimate (UTS), MPa 120 to 220
190
Tensile Strength: Yield (Proof), MPa 57 to 170
150

Thermal Properties

Latent Heat of Fusion, J/g 400
110
Maximum Temperature: Mechanical, °C 160
90
Melting Completion (Liquidus), °C 640
410
Melting Onset (Solidus), °C 630
400
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 210
110
Thermal Expansion, µm/m-K 23
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
27
Electrical Conductivity: Equal Weight (Specific), % IACS 180
37

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
6.6
Embodied Carbon, kg CO2/kg material 8.3
2.8
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1190
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 19
100
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 210
130
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 13 to 23
7.9
Strength to Weight: Bending, points 20 to 30
11
Thermal Diffusivity, mm2/s 86
44
Thermal Shock Resistance, points 5.5 to 9.9
5.9

Alloy Composition

Aluminum (Al), % 97.8 to 99.3
0 to 0.010
Cadmium (Cd), % 0
0 to 0.0050
Chromium (Cr), % 0 to 0.050
0
Copper (Cu), % 0 to 0.15
0.5 to 1.0
Iron (Fe), % 0.1 to 0.3
0 to 0.010
Lead (Pb), % 0
0 to 0.010
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0.020 to 0.15
0
Silicon (Si), % 0.35 to 0.8
0
Tin (Sn), % 0
0 to 0.0030
Titanium (Ti), % 0 to 0.1
0 to 0.040
Zinc (Zn), % 0 to 0.1
98.9 to 99.5
Residuals, % 0 to 0.15
0