MakeItFrom.com
Menu (ESC)

6463 Aluminum vs. A384.0 Aluminum

Both 6463 aluminum and A384.0 aluminum are aluminum alloys. They have 84% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6463 aluminum and the bottom bar is A384.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
74
Elongation at Break, % 9.0 to 17
2.5
Fatigue Strength, MPa 45 to 76
140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
28
Shear Strength, MPa 86 to 150
200
Tensile Strength: Ultimate (UTS), MPa 140 to 230
330
Tensile Strength: Yield (Proof), MPa 82 to 200
170

Thermal Properties

Latent Heat of Fusion, J/g 400
550
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 660
610
Melting Onset (Solidus), °C 620
510
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 190 to 210
96
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50 to 55
23
Electrical Conductivity: Equal Weight (Specific), % IACS 170 to 180
73

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 8.3
7.5
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1190
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 25
6.9
Resilience: Unit (Modulus of Resilience), kJ/m3 50 to 300
180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 14 to 24
32
Strength to Weight: Bending, points 22 to 31
38
Thermal Diffusivity, mm2/s 79 to 86
39
Thermal Shock Resistance, points 6.3 to 10
15

Alloy Composition

Aluminum (Al), % 97.9 to 99.4
79.3 to 86.5
Copper (Cu), % 0 to 0.2
3.0 to 4.5
Iron (Fe), % 0 to 0.15
0 to 1.3
Magnesium (Mg), % 0.45 to 0.9
0 to 0.1
Manganese (Mn), % 0 to 0.050
0 to 0.5
Nickel (Ni), % 0
0 to 0.5
Silicon (Si), % 0.2 to 0.6
10.5 to 12
Tin (Sn), % 0
0 to 0.35
Zinc (Zn), % 0 to 0.050
0 to 1.0
Residuals, % 0
0 to 0.5