MakeItFrom.com
Menu (ESC)

6463 Aluminum vs. ASTM A369 Grade FP91

6463 aluminum belongs to the aluminum alloys classification, while ASTM A369 grade FP91 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6463 aluminum and the bottom bar is ASTM A369 grade FP91.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 42 to 74
200
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 9.0 to 17
19
Fatigue Strength, MPa 45 to 76
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 86 to 150
410
Tensile Strength: Ultimate (UTS), MPa 140 to 230
670
Tensile Strength: Yield (Proof), MPa 82 to 200
460

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 160
600
Melting Completion (Liquidus), °C 660
1460
Melting Onset (Solidus), °C 620
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 190 to 210
26
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50 to 55
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 170 to 180
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.0
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.6
Embodied Energy, MJ/kg 150
37
Embodied Water, L/kg 1190
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 25
110
Resilience: Unit (Modulus of Resilience), kJ/m3 50 to 300
560
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 14 to 24
24
Strength to Weight: Bending, points 22 to 31
22
Thermal Diffusivity, mm2/s 79 to 86
6.9
Thermal Shock Resistance, points 6.3 to 10
18

Alloy Composition

Aluminum (Al), % 97.9 to 99.4
0 to 0.020
Carbon (C), % 0
0.080 to 0.12
Chromium (Cr), % 0
8.0 to 9.5
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.15
87.3 to 90.3
Magnesium (Mg), % 0.45 to 0.9
0
Manganese (Mn), % 0 to 0.050
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 0
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.2 to 0.6
0.2 to 0.5
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0
0 to 0.010
Vanadium (V), % 0
0.18 to 0.25
Zinc (Zn), % 0 to 0.050
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.15
0