MakeItFrom.com
Menu (ESC)

6463 Aluminum vs. Nickel 59

6463 aluminum belongs to the aluminum alloys classification, while nickel 59 belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6463 aluminum and the bottom bar is nickel 59.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
220
Elongation at Break, % 9.0 to 17
50
Fatigue Strength, MPa 45 to 76
320
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
84
Shear Strength, MPa 86 to 150
560
Tensile Strength: Ultimate (UTS), MPa 140 to 230
780
Tensile Strength: Yield (Proof), MPa 82 to 200
350

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 160
990
Melting Completion (Liquidus), °C 660
1500
Melting Onset (Solidus), °C 620
1450
Specific Heat Capacity, J/kg-K 900
430
Thermal Conductivity, W/m-K 190 to 210
10
Thermal Expansion, µm/m-K 23
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
65
Density, g/cm3 2.7
8.7
Embodied Carbon, kg CO2/kg material 8.3
12
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1190
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 25
320
Resilience: Unit (Modulus of Resilience), kJ/m3 50 to 300
280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 14 to 24
25
Strength to Weight: Bending, points 22 to 31
22
Thermal Diffusivity, mm2/s 79 to 86
2.7
Thermal Shock Resistance, points 6.3 to 10
15

Alloy Composition

Aluminum (Al), % 97.9 to 99.4
0.1 to 0.4
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
22 to 24
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 0 to 0.2
0 to 0.5
Iron (Fe), % 0 to 0.15
0 to 1.5
Magnesium (Mg), % 0.45 to 0.9
0
Manganese (Mn), % 0 to 0.050
0 to 0.5
Molybdenum (Mo), % 0
15 to 16.5
Nickel (Ni), % 0
56.2 to 62.9
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0.2 to 0.6
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.15
0