MakeItFrom.com
Menu (ESC)

6463 Aluminum vs. Nickel 625

6463 aluminum belongs to the aluminum alloys classification, while nickel 625 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6463 aluminum and the bottom bar is nickel 625.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 9.0 to 17
33 to 34
Fatigue Strength, MPa 45 to 76
240 to 320
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
79
Shear Strength, MPa 86 to 150
530 to 600
Tensile Strength: Ultimate (UTS), MPa 140 to 230
790 to 910
Tensile Strength: Yield (Proof), MPa 82 to 200
320 to 450

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 160
980
Melting Completion (Liquidus), °C 660
1350
Melting Onset (Solidus), °C 620
1290
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 190 to 210
11
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50 to 55
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 170 to 180
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
80
Density, g/cm3 2.7
8.6
Embodied Carbon, kg CO2/kg material 8.3
14
Embodied Energy, MJ/kg 150
190
Embodied Water, L/kg 1190
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 25
220 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 50 to 300
260 to 490
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 14 to 24
26 to 29
Strength to Weight: Bending, points 22 to 31
22 to 24
Thermal Diffusivity, mm2/s 79 to 86
2.9
Thermal Shock Resistance, points 6.3 to 10
22 to 25

Alloy Composition

Aluminum (Al), % 97.9 to 99.4
0 to 0.4
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
20 to 23
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.15
0 to 5.0
Magnesium (Mg), % 0.45 to 0.9
0
Manganese (Mn), % 0 to 0.050
0 to 0.5
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
58 to 68.9
Niobium (Nb), % 0
3.2 to 4.2
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0.2 to 0.6
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0 to 0.4
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.15
0